集合中元素的三个特性是什么,集合的概念

集合中元素的三个特性是什么,集合的概念

以下是关于集合中元素的三个特性是什么,集合的概念的介绍

集合中元素的三个特性:确定性、互异性、无序性。对任意对象都能确定它是不是某一集合的元素,这是集合的最基本特征。没有确定性就不能成为集合。集合(简称集)是数学中一个基本概念,由康托尔提出。它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。集合中元素的三个特性是什么 集合的概念集合中元素的三个特性集合中元素的三个特性:确定性、互异性、无序性。对任意对象都能确定它是不是某一集合的元素,这是集合的最基本特征。没有确定性就不能成为集合。1.确定性对任意对象都能确定它是不是某一集合的元素,这是集合的最基本特征。没有确定性就不能成为集合。如“很大的数”、“个子较高的同学”都不能构成集合。2.互异性集合中的任何两个元素都不相同,即在同一集合里不能出现相同元素。如把两个集合{1,2,3,4},{3,4,5,6,7}的元素合并在一起构成一个新集合,那么这个新集合只能写成{1,2,3,4,5,6,7}。3.无序性集合中的元素是平等的,没有先后顺序。因此判定两个集合是否相同,只需要比较他们的元素是否一样,不需考察排列顺序是否一样。如:{a,b,c}={a,c,b}。集合是什么集合(简称集)是数学中一个基本概念,由康托尔提出。它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论--朴素集合论中的定义,集合就是"一堆东西"。集合里的"东西",叫作元素。若x是集合A的元素,则记作x∈A。集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。现代数学还用"公理"来规定集合。最基本公理例如:外延公理:对于任意的集合S1和S2,S1=S2当且仅当对于任意的对象a,都有若a∈S1,则a∈S2;若a∈S2,则a∈S1。无序对集合存在公理:对于任意的对象a与b,都存在一个集合S,使得S恰有两个元素,一个是对象a,一个是对象b。由外延公理,由它们组成的无序对集合是唯一的,记做{a,b}。由于a,b是任意两个对象,它们可以相等,也可以不相等。当a=b时,{a,b},可以记做或,并且称之为单元集合。空集合存在公理:存在一个集合,它没有任何元素。

关于更多集合中元素的三个特性是什么,集合的概念请留言或者咨询老师

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:集合中元素的三个特性是什么,集合的概念
本文地址:http://www.55jiaoyu.com/show-385629.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档