Spark使用OSS,Select加速数据查询

Spark使用OSS,Select加速数据查询

本文介绍如何配置Spark使用OSS Select加速数据查询,以及使用OSS Select查询数据的优势。

背景信息

本文所有操作基于Apache Impala(CDH6) 处理OSS数据搭建的CDH6集群及配置。

说明文中所有${}的内容为环境变量,请根据您实际的环境修改。

步骤一:配置Spark支持读写OSS

由于Spark默认没有将OSS的支持包放到它的CLASSPATH里面,所以我们需要配置Spark支持读写OSS。您需要在所有的CDH节点执行以下操作:

进入到${CDH_HOME}/lib/spark目录,执行如下命令:

[root@cdh-master spark]# cd jars/[root@cdh-master jars]# ln -s ../../../jars/hadoop-aliyun-3.0.0-cdh6.0.1.jar hadoop-aliyun.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-2.8.3.jar aliyun-sdk-oss-2.8.3.jar[root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar

进入到${CDH_HOME}/lib/spark目录,运行一个查询。

[root@cdh-master spark]# ./bin/spark-shellWARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).WARNING: Running spark-class from user-defined location.Setting default log level to "WARN".To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).Spark context Web UI available at http://x.x.x.x:4040Spark context available as 'sc' (master = yarn, app id = application_1540878848110_0004).Spark session available as'spark'.Welcome to      ____              __     / __/__  ___ _____/ /__    _ / _ / _ `/ __/  '_/   /___/ .__/_,_/_/ /_/_   version 2.2.0-cdh6.0.1      /_/Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)Type in expressions to have them evaluated.Type :help for more information.scala> val myfile = sc.textFile("oss://{your-bucket-name}/50/store_sales")myfile: org.apache.spark.rdd.RDD[String] = oss://{your-bucket-name}/50/store_sales MapPartitionsRDD[1] at textFile at :24scala> myfile.count()res0: Long = 144004764scala> myfile.map(line => line.split('|')).filter(_(0).toInt >= 2451262).take(3)res15: Array[Array[String]] = Array(Array(2451262, 71079, 20359, 154660, 284233, 6206, 150579, 46, 512, 2160001, 84, 6.94, 11.38, 9.33, 681.83, 783.72, 582.96, 955.92, 5.09, 681.83, 101.89, 106.98, -481.07), Array(2451262, 71079, 26863, 154660, 284233, 6206, 150579, 46, 345, 2160001, 12, 67.82, 115.29, 25.36, 0.00, 304.32, 813.84, 1383.48, 21.30, 0.00, 304.32, 325.62, -509.52), Array(2451262, 71079, 55852, 154660, 284233, 6206, 150579, 46, 243, 2160001, 74, 32.41, 34.67, 1.38, 0.00, 102.12, 2398.34, 2565.58, 4.08, 0.00, 102.12, 106.20, -2296.22))scala> myfile.map(line => line.split('|')).filter(_(0) >= "2451262").saveAsTextFile("oss://{your-bucket-name}/spark-oss-test.1")

可正常执行查询,则部署生效。

步骤二:配置Spark支持OSS Select

OSS Select详情请参见OSS Select,以下内容基于oss-cn-shenzhen.aliyuncs.com这个OSS EndPoint来进行。您需要在所有的CDH节点执行以下操作:

下载OSS Select的Spark支持包到${CDH_HOME}/jars目录下(目前该支持包还在测试中)。

解压支持包。

[root@cdh-master jars]# tar -tvf spark-2.2.0-oss-select-0.1.0-SNAPSHOT.tar.gz drwxr-xr-x root/root 0 2018-10-30 17:59 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/-rw-r--r-- root/root 26514 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/stax-api-1.0.1.jar-rw-r--r-- root/root 547584 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-sdk-oss-3.3.0.jar-rw-r--r-- root/root 13277 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-sts-3.0.0.jar-rw-r--r-- root/root 116337 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-core-3.4.0.jar-rw-r--r-- root/root 215492 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-ram-3.0.0.jar-rw-r--r-- root/root 67758 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jettison-1.1.jar-rw-r--r-- root/root 57264 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/json-20170516.jar-rw-r--r-- root/root 890168 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jaxb-impl-2.2.3-1.jar-rw-r--r-- root/root 458739 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jersey-core-1.9.jar-rw-r--r-- root/root 147952 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jersey-json-1.9.jar-rw-r--r-- root/root 788137 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-ecs-4.2.0.jar-rw-r--r-- root/root 153115 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jdom-1.1.jar-rw-r--r-- root/root 65437 2018-10-31 14:41 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar

进入${CDH_HOME}/lib/spark/jars目录,执行如下命令:

[root@cdh-master jars]# pwd/opt/cloudera/parcels/CDH/lib/spark/jars[root@cdh-master jars]# rm -f aliyun-sdk-oss-2.8.3.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-core-3.4.0.jar aliyun-java-sdk-core-3.4.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ecs-4.2.0.jar aliyun-java-sdk-ecs-4.2.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ram-3.0.0.jar aliyun-java-sdk-ram-3.0.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-sts-3.0.0.jar aliyun-java-sdk-sts-3.0.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-3.3.0.jar aliyun-sdk-oss-3.3.0.jar[root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar
对比测试

测试环境:使用spark on yarn进行对比测试,其中Node Manager节点是4个,每个节点最多可以运行4个container,每个container配备的资源是1核2GB内存。

测试数据:共630MB,包含3列,分别是姓名、公司和年龄。

ot@cdh-master jars]# hadoop fs -ls oss://select-test-sz/people/Found 10 items-rw-rw-rw-   1   63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00000-rw-rw-rw-   1   63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00001-rw-rw-rw-   1   63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00002-rw-rw-rw-   1   63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00003-rw-rw-rw-   1   63079930 2018-10-30 17:06 oss://select-test-sz/people/part-00004-rw-rw-rw-   1   63079930 2018-10-30 17:12 oss://select-test-sz/people/part-00005-rw-rw-rw-   1   63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00006-rw-rw-rw-   1   63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00007-rw-rw-rw-   1   63079930 2018-10-30 17:15 oss://select-test-sz/people/part-00008-rw-rw-rw-   1   63079930 2018-10-30 17:16 oss://select-test-sz/people/part-00009

进入到${CDH_HOME}/lib/spark/,启动spark-shell ,分别测试使用OSS Select查询数据和不使用OSS Select查询数据:

[root@cdh-master spark]# ./bin/spark-shellWARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).WARNING: Running spark-class from user-defined location.Setting default log level to "WARN".To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).Spark context Web UI available at http://x.x.x.x:4040Spark context available as 'sc' (master = yarn, app id = application_1540887123331_0008).Spark session available as 'spark'.Welcome to      ____              __     / __/__  ___ _____/ /__    _ / _ / _ `/ __/  '_/   /___/ .__/_,_/_/ /_/_   version 2.2.0-cdh6.0.1      /_/Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)Type in expressions to have them evaluated.Type :help for more information.scala> val sqlContext = spark.sqlContextsqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@4bdef487scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +     |   "OPTIONS (" +     |   "oss.bucket 'select-test-sz', " +     |   "oss.prefix 'people', " + // objects with this prefix belong to this table     |   "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'     |   "oss.data.format 'csv'," + // we only support csv now     |   "oss.input.csv.header 'None'," +     |   "oss.input.csv.recordDelimiter 'rn'," +     |   "oss.input.csv.fieldDelimiter ','," +     |   "oss.input.csv.commentChar '#'," +     |   "oss.input.csv.quoteChar '"'," +     |   "oss.output.csv.recordDelimiter 'n'," +     |   "oss.output.csv.fieldDelimiter ','," +     |   "oss.output.csv.quoteChar '"'," +     |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +     |   "oss.accessKeyId 'Your Access Key Id', " +     |   "oss.accessKeySecret 'Your Access Key Secret')")res0: org.apache.spark.sql.DataFrame = []scala>   val sql: String = "select count(*) from people where name like 'Lora%'"sql: String = select count(*) from people where name like 'Lora%'scala>   sqlContext.sql(sql).show()+--------+|count(1)|+--------+|   31770|+--------+scala> val textFile = sc.textFile("oss://select-test-sz/people/")textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/people/ MapPartitionsRDD[8] at textFile at :24scala> textFile.map(line => line.split(',')).filter(_(0).startsWith("Lora")).count()res3: Long = 31770

从下图可看到:使用OSS Select查询数据耗时为15s,不使用OSS Select查询数据耗时为54s,使用OSS Select能大幅度加快查询速度。

Spark对接OSS Select支持包的实现(Preview)

通过扩展Spark的DataSource API可以实现Spark对接OSS Select。通过实现PrunedFilteredScan,可以把需要的列和过滤条件下推到OSS Select执行。目前这个支持包还在开发中,定义的规范和支持的过滤条件如下:

定义的规范:

scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +     |   "OPTIONS (" +     |   "oss.bucket 'select-test-sz', " +     |   "oss.prefix 'people', " + // objects with this prefix belong to this table     |   "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'     |   "oss.data.format 'csv'," + // we only support csv now     |   "oss.input.csv.header 'None'," +     |   "oss.input.csv.recordDelimiter 'rn'," +     |   "oss.input.csv.fieldDelimiter ','," +     |   "oss.input.csv.commentChar '#'," +     |   "oss.input.csv.quoteChar '"'," +     |   "oss.output.csv.recordDelimiter 'n'," +     |   "oss.output.csv.fieldDelimiter ','," +     |   "oss.output.csv.quoteChar '"'," +     |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +     |   "oss.accessKeyId 'Your Access Key Id', " +     |   "oss.accessKeySecret 'Your Access Key Secret')")
字段说明
oss.bucket数据所在的Bucket。
oss.prefix拥有这个前缀的Object都属于定义的这个TEMPORARY VIEW。
oss.schema这个TEMPORARY VIEW的schema,目前通过字符串指定,后续会通过一个文件来指定schema。
oss.data.format数据内容的格式,目前支持CSV格式,其他格式也会陆续支持。
oss.input.csv.*定义CSV输入格式参数。
oss.output.csv.*定义CSV输出格式参数。
oss.endpointBucket所在的Endpoint。
oss.accessKeyId填写AccessKeyId。
oss.accessKeySecret填写AccessKeySecret。

说明目前只定义了基本参数,详情请参见SelectObject,其余参数将陆续支持。

支持的过滤条件:=,<,>,<=, >=,||,or,not,and,in,like(StringStartsWith,StringEndsWith,StringContains)。对于不能下推的过滤条件,例如算术运算、字符串拼接等通过PrunedFilteredScan获取不到的条件,则只下推需要的列到OSS Select。

说明

OSS Select还支持其他过滤条件,详情请参见SelectObject。

对比TPC-H的查询

通过测试TPC-H中query1.sql对于lineitem这个table的查询性能,来检验配置效果。为了能使OSS Select过滤更多的数据,我们将where条件由l_shipdate <= ‘1998-09-16’改为where l_shipdate > ‘1997-09-16’,测试数据大小为2.27 GB。仅使用Spark SQL查询和在Spark SQL上使用OSS Select查询的方式如下:

仅使用Spark SQL查询

[root@cdh-master ~]# hadoop fs -ls oss://select-test-sz/data/lineitem.csv-rw-rw-rw-   1 2441079322 2018-10-31 11:18 oss://select-test-sz/data/lineitem.csv

在Spark SQL上使用OSS Select查询

scala> import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}scala> import org.apache.spark.sql.{Row, SQLContext}import org.apache.spark.sql.{Row, SQLContext}scala> val sqlContext = spark.sqlContextsqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@74e2cfc5scala> val textFile = sc.textFile("oss://select-test-sz/data/lineitem.csv")textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/data/lineitem.csv MapPartitionsRDD[1] at textFile at :26scala> val dataRdd = textFile.map(_.split('|'))dataRdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at :28scala> val schema = StructType(     |     List(     |         StructField("L_ORDERKEY",LongType,true),     |         StructField("L_PARTKEY",LongType,true),     |         StructField("L_SUPPKEY",LongType,true),     |         StructField("L_LINENUMBER",IntegerType,true),     |         StructField("L_QUANTITY",DoubleType,true),     |         StructField("L_EXTENDEDPRICE",DoubleType,true),     |         StructField("L_DISCOUNT",DoubleType,true),     |         StructField("L_TAX",DoubleType,true),     |         StructField("L_RETURNFLAG",StringType,true),     |         StructField("L_LINESTATUS",StringType,true),     |         StructField("L_SHIPDATE",StringType,true),     |         StructField("L_COMMITDATE",StringType,true),     |         StructField("L_RECEIPTDATE",StringType,true),     |         StructField("L_SHIPINSTRUCT",StringType,true),     |         StructField("L_SHIPMODE",StringType,true),     |         StructField("L_COMMENT",StringType,true)     |     )     | )schema: org.apache.spark.sql.types.StructType = StructType(StructField(L_ORDERKEY,LongType,true), StructField(L_PARTKEY,LongType,true), StructField(L_SUPPKEY,LongType,true), StructField(L_LINENUMBER,IntegerType,true), StructField(L_QUANTITY,DoubleType,true), StructField(L_EXTENDEDPRICE,DoubleType,true), StructField(L_DISCOUNT,DoubleType,true), StructField(L_TAX,DoubleType,true), StructField(L_RETURNFLAG,StringType,true), StructField(L_LINESTATUS,StringType,true), StructField(L_SHIPDATE,StringType,true), StructField(L_COMMITDATE,StringType,true), StructField(L_RECEIPTDATE,StringType,true), StructField(L_SHIPINSTRUCT,StringType,true), StructField(L_SHIPMODE,StringType,true), StructField(L_COMMENT,StringType,true))scala> val dataRowRdd = dataRdd.map(p => Row(p(0).toLong, p(1).toLong, p(2).toLong, p(3).toInt, p(4).toDouble, p(5).toDouble, p(6).toDouble, p(7).toDouble, p(8), p(9), p(10), p(11), p(12), p(13), p(14), p(15)))dataRowRdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[3] at map at :30scala> val dataFrame = sqlContext.createDataFrame(dataRowRdd, schema)dataFrame: org.apache.spark.sql.DataFrame = [L_ORDERKEY: bigint, L_PARTKEY: bigint ... 14 more fields]scala> dataFrame.createOrReplaceTempView("lineitem")scala> spark.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from lineitem where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+|l_returnflag|l_linestatus|    sum_qty|      sum_base_price|      sum_disc_price|          sum_charge|           avg_qty|         avg_price|           avg_disc|count_order|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+|           N|           O|7.5697385E7|1.135107538838699...|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.036487881756|0.04999335309103123|    2968297|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+scala> sqlContext.sql("CREATE TEMPORARY VIEW item USING com.aliyun.oss " +     |   "OPTIONS (" +     |   "oss.bucket 'select-test-sz', " +     |   "oss.prefix 'data', " +     |   "oss.schema 'L_ORDERKEY long, L_PARTKEY long, L_SUPPKEY long, L_LINENUMBER int, L_QUANTITY double, L_EXTENDEDPRICE double, L_DISCOUNT double, L_TAX double, L_RETURNFLAG string, L_LINESTATUS string, L_SHIPDATE string, L_COMMITDATE string, L_RECEIPTDATE string, L_SHIPINSTRUCT string, L_SHIPMODE string, L_COMMENT string'," +     |   "oss.data.format 'csv'," + // we only support csv now     |   "oss.input.csv.header 'None'," +     |   "oss.input.csv.recordDelimiter 'n'," +     |   "oss.input.csv.fieldDelimiter '|'," +     |   "oss.input.csv.commentChar '#'," +     |   "oss.input.csv.quoteChar '"'," +     |   "oss.output.csv.recordDelimiter 'n'," +     |   "oss.output.csv.fieldDelimiter ','," +     |   "oss.output.csv.commentChar '#'," +     |   "oss.output.csv.quoteChar '"'," +     |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +     |   "oss.accessKeyId 'Your Access Key Id', " +     |   "oss.accessKeySecret 'Your Access Key Secret')")res2: org.apache.spark.sql.DataFrame = []scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+|l_returnflag|l_linestatus|    sum_qty|      sum_base_price|      sum_disc_price|          sum_charge|           avg_qty|        avg_price|           avg_disc|count_order|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+|           N|           O|7.5697385E7|1.135107538838701E11|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.03648788181|0.04999335309103024|    2968297|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+

从下图可以看出:在Spark SQL上使用OSS Select查询数据耗时为38s,在Spark SQL上不使用OSS Select查询数据耗时为2.5min,使用OSS Select可大幅度加快查询速度。

了解更多请加微信:kinnah333

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:Spark使用OSS,Select加速数据查询
本文地址:http://www.55jiaoyu.com/show-609489.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档