椭圆焦点三角形面积公式

椭圆焦点三角形面积公式

椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角形。焦点三角形面积公式是S=b²·tan(θ/2)(θ为焦点三角形的顶角)。

椭圆焦点三角形面积公式

椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P(不与焦点共线)为顶点组成的三角形。椭圆的焦点三角形性质为:

(1)|PF1|+|PF2|=2a

(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ

(3)周长=2a+2c

(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)

椭圆焦点三角形面积公式

证明:

设P为椭圆上的任意一点P(不与焦点共线),

∠F2F1P=α ,∠F1F2P=β, ∠F1PF2=θ,

则有离心率e=sin(α+β) / (sinα+sinβ),

焦点三角形面积S=b²·tan(θ/2)。

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:椭圆焦点三角形面积公式
本文地址:http://www.55jiaoyu.com/show-80717.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档