多边形的外角和公式

多边形的外角和公式

多边形所有外角的和叫做多边形的外角和。任意凸多边形的外角和都为360°。多边形内角和公式为(n-2)×180°。

多边形的外角和公式

与多边形的内角相对应的是外角,多边形的外角就是将其中一条边延长并与另一条边相夹的那个角。任意凸多边形的外角和都为360°。多边形所有外角的和叫做多边形的外角和。

证明:根据多边形的内角和公式求外角和为360。

n边形内角之和为(n-2)*180,设n边形的内角为∠1、∠2、∠3、...、∠n,对应的外角度数为:180-∠1、180°-∠2、180°-∠3、...、180°-∠n,外角之和为:

(180-∠1)+(180°-∠2)+(180°-∠3)+...+(180°-∠n)

=n*180°-(∠1+∠2+∠3+...+∠n)

=n*180°-(n-2)*180°

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:多边形的外角和公式
本文地址:https://www.55jiaoyu.com/show-117527.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档