初中数学无理数的定义

初中数学无理数的定义

初中数学无理数的定义2020-02-24 10:52:21文/宋则贤

无限不循环的小数就是无理数。换句话说,就是不可以化为整数或者整数比的数。常见的无理数有非完全平方数的平方根、π等。

初中数学无理数的定义

无理数的定义

在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e等。

无理数集相当于实数集中有理数集的补集,实数集R,有理数集Q,所以无理数集合符号为CrQ。

有理数和无理数的区别

实数分为有理数和无理数。有理数和无理数主要区别有两点:

(1)有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,比如4=4.0;4/5=0.8等等;也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数),而无理数只能写成无限不循环小数.

(2)所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.因此,无理数也叫做非比数。

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:初中数学无理数的定义
本文地址:https://www.55jiaoyu.com/show-150565.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档