三角函数的诱导公式怎么用

三角函数的诱导公式怎么用

很多学生都不知道三角函数的诱导公式怎么用,下面和小编一起学习一下吧,供大家参考。

三角函数的诱导公式怎么用

三角函数的诱导公式的用法

1、公式一到公式五函数名未改变,公式六函数名发生改变。

2、公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。

3、对于kπ/2±α(k∈Z)的三角函数值:

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

诱导公式的作用有什么

三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。例如:

1、sin390°=sin(360°+30°)=sin30°=1/2。

2、tan225°=tan(180°+45°)=tan45°=1。

3、cos150°=cos(90°+60°)=sin60°=√3/2。

记住六个三角函数在四个象限里的符号.六个三角函数分为三组:①sin,csc;②cos,sec;③tan,cot;每一组内的两个函数无论在哪个象限,它们的符号总是相同的.然后按上面的顺序记住:比较好象限:+++;第二象限:+--;第三象限:--+;第四象限:-+-。

常用的诱导公式

sin(α+k·360°)=sinα(k∈Z)

cos(α+k·360°)=cosα(k∈Z)

tan(α+k·360°)=tanα(k∈Z)

cot(α+k·360°)=cotα(k∈Z)

sec(α+k·360°)=secα(k∈Z)

csc(α+k·360°)=cscα(k∈Z)

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sec(π+α)=-secα

csc(π+α)=-cscα

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:三角函数的诱导公式怎么用
本文地址:https://www.55jiaoyu.com/show-151130.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档