多项式的定义及因式分解的步骤

多项式的定义及因式分解的步骤

在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式因式分解的步骤是先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。

多项式的定义及因式分解的步骤

多项式的定义

在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的***项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。

多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。

多项式因式分解的步骤

1、如果多项式的首项为负,应先提取负号。这里的“负”,指“负号”。如果多项式的比较好项是负的,一般要提出负号,使括号内比较好项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:多项式的定义及因式分解的步骤
本文地址:https://www.55jiaoyu.com/show-95190.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档