三角函数***公式及推导过程

三角函数***公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数***公式及推导过程。

三角函数***公式及推导过程

三角函数***公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

(4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形)

三角函数***公式推导过程

由余弦定理:a^2+b^2-c^2-2abcosC=0

正弦定理:a/sinA=b/sinB=c/sinC=2R

得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0

转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0

即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0

又cos(C)=-cos(A+B)=sinAsinB-cosAcosB

得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0

(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

同角三角函数的关系公式

倒数关系公式

①tanαcotα=1

②sinαcscα=1

③cosαsecα=1

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:三角函数***公式及推导过程
本文地址:https://www.55jiaoyu.com/show-106686.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档