高一数学公式定理知识点汇编

高一数学公式定理知识点汇编

高一数学的公式中有很多知识,直接关系到高中三年的数学学习。为此,接下来,边肖为大家整理了高一数学学习内容。让我们来看看!

高等数学公式和定理知识点汇编

1.两点后只有一条直线。

2.两点之间最短的线段。

3.同角或等角的余角相等。

4.同角或等角的余角相等。

5.一点后只有一条直线垂直于已知直线。

6.在连接直线外的一点和直线上的每一点的所有线段中,垂直线段最短。

7.平行公理通过直线外的一点,有且只有一条直线平行于这条直线。

8.如果两条直线都平行于第三条直线,则两条直线相互平行。

9、同一位置角度相等,两条直线平行。

10.内角相等,两条直线平行。

11.与侧角和内角互补的两条直线平行。

12.两条直线平行,同一位置角度相等。

13.两条直线平行,内角相等。

14.这两条直线是平行的,并与侧角和内角互补。

15.定理三角形两边之和大于第三边。

16.推断三角形两边之差小于第三边。

17.三角形内角和定理三角形的三个内角之和等于180°

18.推论1直角三角形的两个锐角是互补的。

19.推论2三角形的一个外角等于两个不相邻的内角之和。

20.推论3三角形的外角大于任何不与之相邻的内角。

21.全等三角形对应的边和角相等。

22.角公理(sas)有两条边和它们的夹角的两个三角形的同余。

23.角公理(asa)有两个角,它们的夹紧边对应于两个全等的三角形。

24.推论(aas)有两个角和一个角的对边的两个三角形对应同余。

25.边对边公理(sss)有三条边对应于两个相等三角形的重合。

26.斜边和直角边公理(hl)两个有斜边和一条直角边的直角三角形全等。

27.定理1角平分线上的点到角两边的距离相等。

28.定理2一个角的两边距离相等的点在角的平分线上。

29.一个角的平分线是到该角两边距离相等的所有点的集合。

30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边和等角)

31.推论1等腰三角形顶角的平分线平分底边,与底边垂直。

32.等腰三角形的顶角平分线、底边中线和底边高相互重合。

3.推论3等边三角形的所有角都相等,每个角等于60°。

34.等腰三角形的判定定理如果三角形的两个角相等,那么这两个角的对边也相等(等角等边)

35.推论1三个角相等的三角形是等边三角形。

36.推论2一个角等于60°的等腰三角形是等边三角形。

37.在直角三角形中,如果一个锐角等于30°,那么它的直角边等于斜边的一半。

38.直角三角形斜边上的中线等于斜边的一半。

39.定理线段的中垂线上的点与该线段的两个端点之间的距离相等。

40.逆定理和线段两端点距离相等的点在这条线段的中垂线上。

41.一条线段的中垂线可以看作是从该线段两端到该线段距离相等的所有点的集合。

42.定理1关于一条直线的两个对称图形全等。

43.定理2如果两个图形关于一条直线对称,那么对称轴就是连接对应点的直线的中垂线。

44.定理3两个图形关于一条直线对称。如果它们对应的线段或延长线相交,那么交点在对称轴上。

45.逆定理如果连接两个图形对应点的直线被同一条直线垂直平分,则两个图形关于这条直线对称。

46.勾股定理直角三角形的两条直角边A和B的平方和等于斜边C的平方,即A ^ 2+B ^ 2 = C ^ 2。

47.勾股定理的逆定理。如果三角形的三条边的关系为A 2+B 2 = C 2,那么这个三角形是直角三角形。

48.定理四边形的内角之和等于360°

49.四边形的外角之和等于360度。

50.多边形内角和定理N个多边形的内角和等于(n-2) × 180。

51.推断任意多边形的外角之和等于360。

52、平行四边形性质定理1平行四边形的对角线相等

53、平行四边形性质定理2平行四边形的对边相等。

54.夹在两条平行线中间的平行线相等的推论。

55.平行四边形性质定理平行四边形的3条对角线等分。

56.平行四边形的判定定理1两组对角线相等的四边形是平行四边形。

57.平行四边形的判定定理2两组对边相等的四边形是平行四边形。

58.平行四边形判定定理3对角线等分的四边形是平行四边形。

59.平行四边形的判定定理4一组对边相等的平行四边形是平行四边形。

60.矩形性质定理1矩形的四个角都是直角。

61.矩形性质定理矩形的两条对角线相等。

62.矩形判断定理1三个角为直角的四边形是矩形。

63.矩形判定定理2对角线相等的平行四边形是矩形。

64.钻石性质定理1钻石的四个边都相等。

65.菱形性质定理2菱形的对角线互相垂直,每条对角线平分一组对角线。

66.菱形面积=对角线积的一半,即s=(a×b)÷2

67.菱形判断定理1四条边相等的四边形是菱形。

68.菱形判断定理2对角线互相垂直的平行四边形是菱形

69.正方形性质定理1正方形的四个角都是直角,四条边都相等。

70.正方形性质定理2正方形的两条对角线相等,且垂直等分,每条对角线平分一组对角线。

71.定理1两个中心对称的图全等。

72.定理2关于两个中心对称的图,对称点的线穿过对称中心,被对称中心等分。

73.逆定理如果两个图形对应点的连线通过某一点,并被该点等分,则两个图形关于该点对称。

74.等腰梯形的性质定理等腰梯形在同一底边上的两个角相等。

75.等腰梯形的两条对角线相等。

76.等腰梯形的判定定理两个等角在同一个底边上的梯形是等腰梯形。

77.对角线相等的梯形是等腰梯形。

78.平行线的线段等分定理如果一组平行线在一条直线上切割的线段相等,那么在其他直线上切割的线段也相等。

79.推论1一条穿过梯形一个腰的中点并与底边平行的直线会平分另一个腰。

80.推论2过三角形一边中点与另一边平行的直线会平分第三边。

81.三角形的中线定理三角形的中线平行于第三条边并等于它的一半。

82.梯形中线定理梯形的中线平行于两个底边,等于两个底边之和的一半L = (A+B) ÷ 2s = L× H。

83.(1)比例的基本性质如果A: B = C: D,那么ad=bc如果ad=bc,那么A: B = C: D

84.(2)比例性质如果a/b=c/d,那么(A B)/B = (C D)/D。

85.(3)比例性质如果a/b=c/d=…=m/n(b+d+…+n≠0),则(A+C+…+M)/(B+D+…+N) = A/B。

86.平行线的比例定理划分线段三条平行线切两条直线,得到的对应线段是比例的。

87.推断平行于三角形一边的直线切割另两边(或两边的延长线),得到的对应线段成比例。

88.定理如果一条直线与三角形的两条边(或两条边的延长线)相交,并且对应的线段成比例,那么这条直线与三角形的第三条边平行。

89.平行于三角形一边并与其他两边相交的直线,割下的三角形的三条边与原三角形的三条边成比例。

90.定理平行于三角形一边的直线与其他两边(或两边的延长线)相交,形成的三角形与原三角形相似。

91.相似三角形的判定定理1两个角对应,两个三角形相似(asa)

92.两个直角三角形除以斜边上的高度,与原三角形相似。

93.判定定理2:两边按比例对应且夹角相等,两个三角形相似(sas)

94.判定定理3:三条边按比例对应,两个三角形相似(sss)

95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边成正比,那么这两个直角三角形相似。

96.性质定理1相似三角形与高度之比、对应中线之比、对应角平分线之比都等于相似比

97.性质定理2相似三角形的周长之比等于相似比。

98.性质定理3相似三角形面积之比等于相似比的平方。

99.任意锐角的正弦值等于其余角的余弦值,任意锐角的余弦值等。

它的余角的正弦值

00.任何锐角的正切等于其余角的余切,任何锐角的余切等于其余角的正切。

01.圆是一组具有固定距离和固定长度的点。

02.圆的内部可以看作是中心距小于半径的点的集合。

03.圆的外侧可以看作是中心距大于半径的点的集合。

04.同圆或等圆的半径相等。

05.到固定点的距离等于固定长度的点的轨迹是以固定点为圆心,以固定长度为半径的圆。

06.一个点到已知线段的两个端点的距离相等的点的轨迹就是线段的中垂线。

07.一个点到一个已知角的两边距离相等的点的轨迹就是这个角的平分线。

08.到两条平行线等距离的点的轨迹是平行于这两条平行线且距离相等的直线。

09.定理不在同一条直线上的三点决定一个圆。

10.垂直直径定理垂直于弦的直径平分弦,并平分与弦相对的两条弧。

11.推论1①平分弦的直径(不是直径)垂直于弦,平分弦所面对的两条弧。

②弦的中垂线穿过圆心,平分与弦相对的两条弧。

(3)平分与弦相对的一段弧的直径,垂直平分弦,平分与弦相对的另一段弧。

12.推论2一个圆的两条平行弦所夹的弧相等。

13.圆是以圆心为对称中心的中心对称图形。

14.定理在同一圆或等圆内,等圆心角的弧相等,弦相等,弦到弦的距离相等。

15.推论在同一个圆或等圆内,若两个圆心角、两个圆弧、两个弦或两个弦的弦间距离的一组相等,则对应的其他组也相等。

16.定理圆弧的圆周角等于圆心角的一半。

17.推论1:同弧或等弧的圆周角相等;在相同或相等的圆中,相等的圆周角所对的弧也是相等的。

18.推论二。半圆(或直径)的圆周角是直角;圆周角为90°的弦是直径。

19.推论3如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

20.定理圆的内接四边形的对角线互补,任一外角等于其内角。

21、①直线L与⊙o相交d。

②直线L与⊙o d=r相切

③直线L与⊙o的距离为D > R。

12.切线的判定定理通过半径外端并垂直于该半径的直线为圆的切线。

13、切线定理的性质圆的切线垂直于切点的半径。

24.推论1过圆心且垂直于切线的直线必过切点。

25.推论2过切点且垂直于切线的直线必过圆心。

16.切线长度定理圆的两条切线是从圆外的一点画出的。它们的切线长度相等,圆心和该点之间的直线平分两条切线的夹角。

27.圆的外切四边形的两条对边之和相等。

18.正切角定理正切角等于它所夹圆弧对的圆周角。

19.推论如果两个切角的弧相等,那么两个切角也相等。

30.相交弦定理圆内两条相交弦,两条长线除以交点的乘积相等。

31.推论如果弦与直径垂直相交,那么弦的一半由其直径形成。

两条线段的比例中项

12.割线定理介绍了圆从圆外的一点的切线和割线,切线长度是从这点到割线。

与圆相交的两条线的长度的比例中项。

13.从圆外的一点推断两条割线,从该点到每条割线与圆的交点的两条长线的乘积相等。

14.如果两个圆相切,那么切点一定在连接两颗心的线上。

15、①D > R+R外切的两个圆②D = R+R外切的两个圆。

③两个圆相交r-rr)

④两个内接d=r-r(r>r)的圆⑤两个包含dr)的圆

36.定理两个相交圆的连线垂直平分两个圆的公共弦。

37.定理把一个圆分成n(n≥3):

(1)依次连接各点得到的多边形就是这个圆的内接正N多边形。

?Make通过每个点的圆的切线,以相邻切线的交点为顶点的多边形是圆的外切n形。

18.定理任何正多边形都有外接圆和内切圆,它们是同心圆。

39.正N形多边形的每个内角等于(n-2) × 180/n

40.定理正N形的半径和顶点把正N形分成2n个全等的直角三角形。

11.正n形的面积sn=pnrn/2p表示正n形的周长。

12.正三角形面积√3a/4a表示边长。

13.如果在一个顶点周围有K个正N边角,因为这些角的和应该是

30,所以k× (n-2) 180/n = 360就变成了(n-2)(k-2)=4。

14.弧长计算公式:l=nπr/180

15.扇形面积公式:s扇形=nπr2/360=lr/2

16.内公切线的长度=d-(r-r),外公切线的长度=d-(r+r)

17.等腰三角形的两条边是相等的。

18.等腰三角形的顶角平分线、底边中线和底边高相互重合。

19.如果三角形的两个角相等,则两个角的对边也相等。

10.有三条等边的三角形叫做等边三角形。

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:高一数学公式定理知识点汇编
本文地址:https://www.55jiaoyu.com/show-2623.html
本文由合作方发布,不代表展全思梦立场,转载联系作者并注明出处:展全思梦

热门文档

推荐文档